Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.505
1.
Methods Mol Biol ; 2788: 295-316, 2024.
Article En | MEDLINE | ID: mdl-38656522

This protocol outlines the construction of a plant transformation plasmid to express both the Cas9 nuclease and individual guide RNA (gRNA), facilitating the induction of double-stranded breaks (DSBs) in DNA and subsequent imprecise repair via the non-homologous end-joining (NHEJ) pathway. The gRNA expression cassettes are assembled from three components. First, the Medicago truncatula U6.6 (MtU6) promoter (352 bp) and scaffold (83 bp) sequences are amplified from a pUC-based plasmid. Additionally, a third fragment, corresponding to the target sequence, is synthesized as an oligonucleotide. The three gRNA expression fragments are then loosely assembled in a ligation-free cloning reaction and used as a template for an additional PCR step to amplify a single gRNA expression construct, ready for assembly into the transformation vector. The benefits of this design include cost efficiency, as subsequent cloning reactions only require 59 oligonucleotides and standard cloning reagents. Researchers engaged in CRISPR/Cas9-mediated genome editing in plants will find this protocol a clear and resource-efficient approach to create transformation plasmids for their experiments.


CRISPR-Cas Systems , Gene Knockout Techniques , Genetic Vectors , RNA, Guide, CRISPR-Cas Systems , Genetic Vectors/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Knockout Techniques/methods , Plasmids/genetics , Medicago truncatula/genetics , Gene Editing/methods , Plants, Genetically Modified/genetics , Cloning, Molecular/methods , Promoter Regions, Genetic/genetics , DNA End-Joining Repair/genetics , Transformation, Genetic
2.
Methods Mol Biol ; 2757: 269-287, 2024.
Article En | MEDLINE | ID: mdl-38668972

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Calcium , Ctenophora , Escherichia coli , Imidazoles , Luminescent Proteins , Ctenophora/genetics , Ctenophora/metabolism , Calcium/metabolism , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Gene Expression , Cloning, Molecular/methods , Pyrazines/metabolism
3.
Methods Mol Biol ; 2757: 289-306, 2024.
Article En | MEDLINE | ID: mdl-38668973

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Cloning, Molecular , Ctenophora , DNA, Complementary , Gene Library , Luminescent Proteins , Animals , Ctenophora/genetics , Ctenophora/metabolism , Cloning, Molecular/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
4.
Biotechniques ; 76(5): 203-215, 2024 May.
Article En | MEDLINE | ID: mdl-38573592

In the absence of a DNA template, the ab initio production of long double-stranded DNA molecules of predefined sequences is particularly challenging. The DNA synthesis step remains a bottleneck for many applications such as functional assessment of ancestral genes, analysis of alternative splicing or DNA-based data storage. In this report we propose a fully in vitro protocol to generate very long double-stranded DNA molecules starting from commercially available short DNA blocks in less than 3 days using Golden Gate assembly. This innovative application allowed us to streamline the process to produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the Citizen of 1789 . The DNA molecule produced can be readily cloned into a suitable host/vector system for amplification and selection.


DNA , DNA/genetics , DNA/chemistry , Information Storage and Retrieval/methods , Humans , Base Sequence/genetics , Cloning, Molecular/methods
5.
Nucleic Acids Res ; 52(3): 1498-1511, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38180813

A 'genomically' humanized animal stably maintains and functionally expresses the genes on human chromosome fragment (hCF; <24 Mb) loaded onto mouse artificial chromosome (MAC); however, cloning of hCF onto the MAC (hCF-MAC) requires a complex process that involves multiple steps of chromosome engineering through various cells via chromosome transfer and Cre-loxP chromosome translocation. Here, we aimed to develop a strategy to rapidly construct the hCF-MAC by employing three alternative techniques: (i) application of human induced pluripotent stem cells (hiPSCs) as chromosome donors for microcell-mediated chromosome transfer (MMCT), (ii) combination of paclitaxel (PTX) and reversine (Rev) as micronucleation inducers and (iii) CRISPR/Cas9 genome editing for site-specific translocations. We achieved a direct transfer of human chromosome 6 or 21 as a model from hiPSCs as alternative human chromosome donors into CHO cells containing MAC. MMCT was performed with less toxicity through induction of micronucleation by PTX and Rev. Furthermore, chromosome translocation was induced by simultaneous cleavage between human chromosome and MAC by using CRISPR/Cas9, resulting in the generation of hCF-MAC containing CHO clones without Cre-loxP recombination and drug selection. Our strategy facilitates rapid chromosome cloning and also contributes to the functional genomic analyses of human chromosomes.


Cloning, Molecular , Animals , Cricetinae , Humans , Mice , Chromosomes, Artificial , Cloning, Molecular/methods , Cricetulus , CRISPR-Cas Systems , DNA , Gene Editing , Induced Pluripotent Stem Cells , Translocation, Genetic
6.
ACS Synth Biol ; 12(4): 1358-1363, 2023 04 21.
Article En | MEDLINE | ID: mdl-37043632

The yeast Candida glabrata is an emerging, often drug-resistant opportunistic human pathogen that can cause severe systemic infections in immunocompromised individuals. At the same time, it is a valuable biotechnology host that naturally accumulates high levels of pyruvate─a valuable chemical precursor. Tools for the facile engineering of this yeast could greatly accelerate studies on its pathogenicity and its optimization for biotechnology. While a few tools for plasmid-based expression and genome engineering have been developed, there is no well-characterized cloning toolkit that would allow the modular assembly of pathways or genetic circuits. Here, by characterizing the Saccharomyces cerevisiae-based yeast molecular cloning toolkit (YTK) in C. glabrata and by adding missing components, we build a well-characterized CgTK (C. glabrata toolkit). We used the CgTK to build a CRISPR interference system for C. glabrata that can be used to generate selectable phenotypes via single-gRNA targeting such as is required for genome-wide library screens.


Candida glabrata , Cloning, Molecular , Humans , Biotechnology , Candida glabrata/genetics , Cloning, Molecular/methods , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering
7.
ACS Synth Biol ; 12(4): 909-921, 2023 04 21.
Article En | MEDLINE | ID: mdl-37026178

Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.


Bacteriophages , Cloning, Molecular , Genetic Vectors , Prophages , Animals , Bacteriophages/genetics , Bacteriophages/metabolism , Cloning, Molecular/methods , DNA/genetics , DNA/metabolism , DNA Replication/genetics , DNA Replication/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mammals/genetics , Plasmids/genetics , Prophages/genetics , Genetic Engineering/methods , Telomerase/genetics , Telomerase/metabolism , Nucleic Acid Conformation
8.
PLoS Biol ; 20(2): e3001539, 2022 02.
Article En | MEDLINE | ID: mdl-35157696

Is there any research that should not be done? Could you think of an experiment and then decide not to do it? These questions get to the heart of the power of modern genetics to mix up and alter genes.


Biomedical Research/ethics , Cloning, Molecular/methods , DNA, Recombinant , Safety , Biomedical Research/methods , Humans
9.
Gene ; 823: 146350, 2022 May 20.
Article En | MEDLINE | ID: mdl-35189249

Bursaphelenchus xylophilus is an invasive plant-parasitic nematode causing the notorious pine wilt disease (PWD) worldwide, which results in huge economic losses. G protein-coupled receptors (GPCRs) play an essential role in mating and reproduction behavior of animals. As a unique biogenic amine in invertebrates, octopamine (OA) can regulate a variety of physiological and behavioral responses by binding specific GPCRs. These specific GPCRs are also called octopamine receptors (OARs), and octr-1 is one of them. However, Bxy-octr-1 is unknown in B. xylophilus. Therefore, we investigated the expression pattern and biological function of Bxy-octr-1. Bioinformatics analysis indicated that Bxy-octr-1 was evolutionarily conserved. The real-time quantitative PCR data revealed that Bxy-octr-1 expression was required throughout the entire life of B. xylophilus. mRNA in situ hybridization showed that Bxy-octr-1 was mainly located in the cephalopharynx, body wall muscle, intestine, and gonadal organs of B. xylophilus. RNA interference (RNAi) showed that embryo hatching rates and locomotion speeds were both dramatically decreased. Obvious abnormal phenotypes were observed in the second-stage of juveniles after RNAi treated. Furthermore, its ontogenesis was stunting. Lack of Bxy-octr-1 reduced fecundity of females, of which 31.25% of them could not successfully ovulate. In addition, the error positioning ratio of the nematode was significantly increased. Our study suggests that Bxy-octr-1 is indispensable for locomotion, early ontogenesis and mating behavior in B. xylophilus.


Cloning, Molecular/methods , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Tylenchida/physiology , Animals , Computational Biology/methods , Evolution, Molecular , Female , Gene Expression Regulation , In Situ Hybridization, Fluorescence , Male , Phenotype , RNA Interference , Sequence Analysis, DNA , Tissue Distribution , Tylenchida/genetics , Tylenchida/metabolism
10.
Gene ; 822: 146331, 2022 May 15.
Article En | MEDLINE | ID: mdl-35183686

Silicon, one of the most prevalent elements in the soil, is beneficial for plant growth and defense against different stresses. The silicon transporter gene (Lsi) plays an important role in the uptake and transport of silicon in higher plants. In this study, a total of 32 Lsi genes, including 20 SsLsi in sugarcane wild species Saccharum spontaneum, 5 ShLsi in Saccharum hybrid cultivar R570 and 7 SbLsi in sugarcane related species Sorghum bicolor, were identified and classified into three groups. Bioinformatics analysis showed that instability, hydrophobicity, localization of cell membranes and vacuoles were the main features of the Lsi proteins. Whole genome and segmental duplication contributed to the main expansion of Lsi gene family. Collinearity analysis of the Lsi genes showed that S. spontanum and R570 had a collinear relationship with monocotyledonous plants S. bicolor and Oryza sativa, but not with dicotyledonous plants Arabidopsis thaliana and Vitis vinifera. The replicated Lsi genes were mainly subjected to strong selection pressure for purification. The diverse cis-regulatory elements in the promoter of SsLsi, ShLsi and SbLsi genes suggested that they were widely involved in the response of plants to various stresses and the regulation of the growth and development. Transcriptome data and real time quantitative PCR analysis showed that the Lsi genes exhibited different expression profiles in sugarcane tissues and under Sporisorium scitamineum, drought and cold stresses. In addition, the cDNA and genomic DNA sequences of ShLsi6 that was homologous to SsLsi1b gene was cloned from Saccharum hybrid cultivar ROC22. Transient expression analysis showed that, compared with the control, Nicotiana benthamiana leaves which overexpressed the ShLsi6 gene showed a high sensitivity after inoculation with tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provides important information for further functional analysis of Lsi genes and resistant breeding in sugarcane.


Carrier Proteins/genetics , Cloning, Molecular/methods , Computational Biology/methods , Saccharum/growth & development , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharum/classification , Saccharum/genetics , Saccharum/metabolism , Sequence Analysis, DNA , Silicon/metabolism , Stress, Physiological , Tissue Distribution
11.
Gene ; 821: 146285, 2022 May 05.
Article En | MEDLINE | ID: mdl-35176427

KCNQ1, a voltage-gated potassium ion channel, plays an important role in various physiological processes, including osteoblast differentiation in higher animals. However, its function in lower invertebrates such as marine shellfish remains poorly understood. Pearl oysters, such as P. fucata martensii, are ideal for studying biomineralisation. In this study, a full-length cDNA of KCNQ1 from P. fucata martensii (PfKCNQ1) was obtained, and its function in shell formation was investigated. The full-length 3945 bp cDNA of PfKCNQ1 included an open reading frame (ORF) of 1944 bp encoding a polypeptide of 647 amino acids. Multiple sequence alignment revealed high homology with KCNQ1 from other species, with six transmembrane domains (S1 - S6) and a pore (P) region. Expression pattern analysis showed that PfKCNQ1 was expressed in all tested tissues, with highest expression in mantle and heart, and shell notching induced PfKCNQ1 expression. Silencing PfKCNQ1 expression inhibited PfKCNQ1 expression and downregulated four biomineralisation-related genes (Shematrin, Pif80, N16 and MSI60). Disordered crystals or "hollows" were visible in the shell ultrastructure by scanning electron microscopy following PfKCNQ1 knockdown. The results suggested that PfKCNQ1 may participate in or regulate biomineralisation and shell formation in pearl oyster.


Cloning, Molecular/methods , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Nacre/metabolism , Pinctada/metabolism , Amino Acid Sequence , Animal Shells/metabolism , Animals , KCNQ1 Potassium Channel/chemistry , Open Reading Frames , Pinctada/genetics , Protein Domains , Sequence Alignment , Tissue Distribution
12.
PLoS One ; 17(2): e0263693, 2022.
Article En | MEDLINE | ID: mdl-35148332

Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0-4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0-11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0-8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.


Cloning, Molecular/methods , Cyclin-Dependent Kinase 6/chemistry , Cyclin-Dependent Kinase 6/metabolism , Apoptosis , Cell Cycle , Cell Proliferation , Circular Dichroism , Cyclin-Dependent Kinase 6/genetics , Humans , Hydrogen-Ion Concentration , Models, Molecular , Molecular Dynamics Simulation , Protein Structure, Secondary , Protein Structure, Tertiary
13.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article En | MEDLINE | ID: mdl-35162941

The ATP-binding cassette transporter, P-glycoprotein (P-gp), has been demonstrated to facilitate the clearance of amyloid-beta (Aß) peptides, exporting the neurotoxic entity out of neurons and out of the brain via the blood-brain barrier. However, its expression and function diminish with age and in Alzheimer's disease. P-gp is known to undergo ubiquitination, a post-translational modification that results in internalisation and/or degradation of the protein. NEDD4-1 is a ubiquitin E3 ligase that has previously been shown to ubiquitinate P-gp and reduce its cell surface expression. However, whether this effect translates into altered P-gp activity remains to be determined. siRNA was used to knockdown the expression of Nedd4 in CHO-APP cells. Western blot analysis confirmed that absence of Nedd4 was associated with increased P-gp protein expression. This was accompanied by increased transport activity, as shown by export of the P-gp substrate calcein-AM, as well as enhanced secretion of Aß peptides, as shown by ELISA. These results implicate Nedd4 in the regulation of P-gp, and highlight a potential approach for restoring or augmenting P-gp expression and function to facilitate Aß clearance from the brain.


Amyloid beta-Protein Precursor/metabolism , Cloning, Molecular/methods , Nedd4 Ubiquitin Protein Ligases/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Biological Transport , CHO Cells , Cricetulus , Fluoresceins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitination
14.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article En | MEDLINE | ID: mdl-35163069

Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs.


Cloning, Molecular/methods , Escherichia coli/growth & development , Gene Editing/methods , CRISPR-Cas Systems , Cytidine Deaminase/genetics , Escherichia coli/genetics , Glycoproteins/genetics , Humans , Nuclear Proteins/genetics , Proteins/genetics
15.
Molecules ; 27(3)2022 Jan 24.
Article En | MEDLINE | ID: mdl-35164011

Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 ∘C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.


Aldehyde Oxidoreductases/metabolism , Bacillus subtilis/metabolism , Pichia/enzymology , Recombinant Proteins/metabolism , Acetaldehyde/metabolism , Aldehyde Oxidoreductases/genetics , Bacillus subtilis/genetics , Cloning, Molecular/methods , Metabolic Engineering/methods , Organisms, Genetically Modified , Pichia/genetics , Promoter Regions, Genetic , Protein Sorting Signals/genetics , Recombinant Proteins/genetics , Secretory Pathway/genetics
16.
Mol Biol Rep ; 49(2): 1643-1647, 2022 Feb.
Article En | MEDLINE | ID: mdl-35028856

BACKGROUND: Fatty acid elongases (FAEs), which catalyse elongation reactions of a carbon chain of very-long-chain fatty acids, play an important role in shoot development in rice. The elongation reactions consist of four sequential reactions catalysed by distinct enzymes, which are assumed to form an elongation complex. However, no interacting proteins of ONION1 (ONI1) and ONI2, which are ketoacyl CoA synthase catalyzing the first step and are required for shoot development in rice, are reported. METHODS AND RESULTS: In this study ketoacyl CoA reductase (KCR) that interacts with ONI1 and ONI2 was searched. A database search identified 10 KCR genes in the rice genome. Among the genes, the expression pattern of KCR1 was similar to that of ONI2. Yeast two-hybrid analysis showed interaction of ONI2 with KCR1, which was confirmed by GST pull-down assay. No interacting partner of ONI1 was identified. CONCLUSIONS: Our results suggest that ONI2 and KCR1 form an FAE complex that may play a role in biosynthesizing VLCFAs during shoot development.


3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Fatty Acid Elongases/metabolism , Oryza/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/physiology , Acetyltransferases/genetics , Amino Acid Sequence/genetics , Cloning, Molecular/methods , Coenzyme A/genetics , Coenzyme A/metabolism , Fatty Acid Elongases/genetics , Fatty Acids/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Oxidoreductases/genetics , Plant Proteins/genetics
17.
Protein Expr Purif ; 189: 105978, 2022 01.
Article En | MEDLINE | ID: mdl-34562586

Urate oxidase is a promising biological medicine for hyperuricemia treatment, but immunogenicity obstructs the development of its clinical application. The recombinant porcine-human chimeric uricase mutant named dHU-wPU is a humanized chimeric uricase based on wild porcine uricase (wPU), which can effectively reduce the limitation of potential immunogenicity with a high homology (92.76%) to deduced human uricase (dHU). Unfortunately, the insoluble expression form of dHU-wPU in E. coli increases the difficulty of production. In this study, we described a more convenient method to efficiently obtain recombinant dHU-wPU protein from E. coli. Combination small ubiquitin-related modifier protein (SUMO) and maltose-binding protein (MBP) was employed to achieve the soluble expression of dHU-wPU. MBP-SUMO-dHU-wPU fusion protein was not only overexpressed in a soluble form, but also showed high purification and cleavage efficiency. Subsequently, we optimized the culture conditions of shake flasks and expanded the production of MBP-SUMO-dHU-wPU fusion protein in a 5 L bioreactor. Finally, about 15 mg of recombinant dHU-wPU was obtained from 1 L M9 fermentation culture by using two-step affinity chromatography, with a SDS-PAGE purity over 90%. In vitro activity analysis showed that dHU-wPU had better ability to catalyze uric acid than wPU.


Cloning, Molecular/methods , Maltose-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , SUMO-1 Protein/genetics , Urate Oxidase/genetics , Animals , Bioreactors , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Hyperuricemia/genetics , Hyperuricemia/metabolism , Hyperuricemia/pathology , Hyperuricemia/therapy , Maltose-Binding Proteins/metabolism , Mutation , Plasmids/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SUMO-1 Protein/metabolism , Solubility , Swine , Urate Oxidase/metabolism , Uric Acid/metabolism
18.
Mol Biotechnol ; 64(3): 293-310, 2022 Mar.
Article En | MEDLINE | ID: mdl-34611825

Lectins are glycoproteins and known for their peculiar carbohydrate-binding activity and their insect-pest-resistant properties. Earlier we have published our research finding on novel gene encoding Bowman-Birk type protease inhibitor with insecticidal properties from rice bean. This paper presents first report on cloning, sequencing, and expression of RbL ORF of 843 bp encoding 280 amino acids long lectin precursor from rice bean (Vigna umbellata) seeds. Blast analysis revealed more than 90% similarity of RbL protein with Vigna aconitifolia and Vigna angularis lectins. Phylogenetic analysis also revealed a close relationship between RbL and other legume lectins. Sequence analysis of genomic DNA revealed intronless nature of RbL gene (GenBank accession No. MT043160). The isolated RbL ORF was expressed in E. coli BL-21(DE3) cells and maximum expression was recorded with 0.5 mM IPTG after 4 h incubation at 37 °C. Western blotting confirmed RbL protein expression in E. coli. Recombinant protein (His6-RbL) of ~ 35 kDa m.wt was purified using Ni-NTA affinity chromatography to the extent of 0.26 mg/ml. In silico analysis characterized RbL protein as acidic, stable, hydrophobic, and secretary protein with one signal peptide cleavage site (A26-A27) and four N-glycosylation sites. Template-based 3D model of RbL was structured using MODELLER tool and validated as good quality model. Structural analysis revealed dominance of ß-pleated sheets and ß-turns in RbL protein structure. ß-D-galactose, N-acetyl-D-glucosamine, and lactose were predicted as putative ligands for RbL protein. Hydrogen bonding and hydrophobic forces were the major interactions between the predicted ligands and RbL protein. Agglutination and agglutination inhibition assays confirmed the binding specificity of RbL protein with the trypsinized rabbit erythrocytes and with the predicted ligands, respectively. Gene ontology analysis functionally annotated RbL protein as a plant defense protein. The novel information generated in the study is not mere pre-experimental findings but could also lay foundation for future research on exploring RbL gene and encoding protein for different biomedical and biotechnological applications.


Cloning, Molecular/methods , Plant Lectins/genetics , Plant Lectins/metabolism , Vigna/growth & development , Acetylglucosamine/metabolism , Agglutination , Evolution, Molecular , Galactose/metabolism , Gene Expression Regulation, Plant , Hydrogen Bonding , Lactose/metabolism , Models, Molecular , Open Reading Frames , Phylogeny , Plant Lectins/chemistry , Protein Conformation , Vigna/genetics , Vigna/metabolism
19.
Mol Biol Rep ; 49(2): 951-969, 2022 Feb.
Article En | MEDLINE | ID: mdl-34773550

BACKGROUND: Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS: The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS: Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.


Chitinases/genetics , Enterobacter/genetics , Amino Acid Sequence/genetics , Catalytic Domain/genetics , Chitin/chemistry , Chitin/genetics , Chitin/metabolism , Chitinases/metabolism , Chromatography, Liquid/methods , Cloning, Molecular/methods , Computer Simulation , Escherichia coli/genetics , Open Reading Frames/genetics , Plant Proteins , Sequence Analysis/methods , Tandem Mass Spectrometry/methods
20.
Gene ; 813: 146119, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34902513

Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).


Arabidopsis Proteins/genetics , Protein Kinases/genetics , Setaria Plant/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Cloning, Molecular/methods , Phenotype , Plant Somatic Embryogenesis Techniques/methods , Plants, Genetically Modified , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Setaria Plant/metabolism , Signal Transduction/genetics
...